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Abstract. We develop a general class of approximations of mean-spherical (MSA) type as 
a method for studying lattice percolation problems. We review the MSA and test certain 
extensions of it on lattice spin models. The relations between thermal spin models and 
percolation models are then reviewed in order to identify natural extensions of the MSA 

to percolation models. These extensions are used to treat both site and bond percolation 
models. In one ‘low-density’ formulation of MSA, the threshold for bond percolation on 
a lattice is found to equal the value at the origin of the corresponding lattice Green’s 
function. This formula gives accurate results for all lattices studied, and in all space 
dimensions d 2 3 .  An accurate treatment is also given of the general site-band problem. 
The entire percolation locus for this problem agrees closely with the results of simulation. 
We also introduce a new method for studying percolation transitions which is a hybrid of 
the Kikuchi cluster approximation scheme and the MSA. The method is shown to give 
goad values for percolation thresholds while preserving the valuable features of the standard 
MSA. In particular, it provides a convenient means of computing the pair connectedness 
function. We also explore extensions of our approximations to treat directed site and bond 
percolation. 

1. Introduction 

Percolation is a phenomenon defined by the formation of macroscopic clusters in a 
many-body system, given a criterion for pairwise connectednesst. It has been studied 
in recent years from at least two different points of view. Those studying percolation 
as a particularly accessible, geometrical analogue of a phase transition seek an accurate 
method to locate the percolation threshold and to study the scaling behaviour of 
physical quantities in its vicinity. On the other hand, those who want to study the 
influence of percolation on bulk material properties and transport processes in dis- 
ordered materials and liquids want an account of various key quantities that describe 
clustering, such as the average coordination number of a particle and the mean cluster 
size, throughout the entire range of system parameters. For example, the influence of 
ionic clustering upon the specific conductance of electrolytes is a subject of current 
interest in physical chemistry [l]. 

The solution of integral equations for the connectedness function (and its relatives) 
has been shown to yield a detailed, powerful approach to the latter class of problems. 
Several such integral equations have been derived and solved, both for continuum and 

t We make the standard distinction between connectivity and connectedness: the former describer the 
(constant) properties of the graph or lattice on which a percolation process is defined; the latter describes 
the properties of clusters generated by that process; see e.g. P I .  
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lattice percolation 12-8, 131. The challenge of consistently incorporating into this 
approach information about the percolation locus has received much less attention. 
This paper is a contribution toward that effort. 

One such integral equation approximation which has been studied for various 
continuum percolation models is the Ornstein-Zernike equation with closure provided 
by the mean spherical approximation (MSA). This approximation was originally 
developed [9] for nearest-neighbour thermal spin models and their equivalent lattice- 

to continuum fluid models. The MSA for a continuum system of particles at thermal 
equilibrium can be defined by the equations 

J A Given and G Stell 
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4 x 1 2 )  = - P u ( x I I )  x,2> a. 

Here, h ( q 2 )  and c(x,,) are, respectively, the full correlation function and the direct 
correlation function between particles at the vector positions x, and x2. Here, x12= 
Ix, -x2( is the scalar distance between such particles, u ( x 1 2 )  is their pairwise potential 
energy, and p = ( k T ) - l ,  where T is the absolute temperature and k is Boltzmann's 
constant. The distance a is the distance of closest approach fixed by a hard-core 

[ l l ,  121 to treat a wide variety of thermal problems. A major benefit of this approxima- 
tion is that the resulting equations, e.g. for the equation of state, can be solved 
analytically for many models of interest. 

In 1983, the MSA was extended [3] to the random-sphere percolation model, to 
give a relation between the two-point connectedness function g,(x) and the direct 
connectedness function c,(x) of that model. This is a model of randomly placed spheres 
which are taken to be directly connected if their pairwise separation is less than a fixed 
distance a, the sphere diameter. For this model, the MSA is equivalent to the Percus- 
Yevick approximation for percolation, which was first suggested by Coniglio et a1 [2] 
in work that extended the cluster-expansion treatment of g,(x) by Hill [23]. More 
general models have been introduced by considering systems of particles in thermal 
equilibrium interacting via a pair potential d(x). which introduces correlation between 
the centres of particles (if one sets $(x)=O the model reduces to the random-sphere 
percolation model). A number of such continuum systems of interest can be solved 
exactly in the MSA [3-51. It is also natural to apply the MSA to the functions gc(x) and 
c,(x) in lattice peroclation models. A recent study of MSA for lattice site percolation 
by  H ~ y e  and Stell [6] found that both the percolation threshold and critical exponents 
for percolation on certain lattices in three and higher dimensions are predicted accur- 
ately. In this paper, we extend that study by using certain general methods of MSA 

type to investigate lattice bond and site-bond percolation. The critical exponents are 
found to be the same as in site percolation, as one expects, while the bond percolation 
threshold is predicted accurately on all lattices studied, and in all dimensions d 3 3. 
In  this paper, we will work with a very general class of approximations of M S A  type. 
These approximations, in general, define a closure of the Ornstein-Zernike equation 
by providing a pair of assumptions corresponding to the two given in (1.1). In general: 

(i) The volume surrounding each lattice site is divided in two by choosing a sphere 
that surrounds that site. The value of the pair correlation function (either h(x)  or c(x) 
can be used), giving the interaction of a site with other sites inside the chosen sphere, 
is provided explicitly, either by the constraints of the model itself, or by  some other 

po!Pn!lz! which is pa!? nf !he pzirwise in!er.ctlQn. The MS.A h2S bee!! csed prafit.b!y 
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approximation. Many approximation schemes provide such values for correlation 
functions at small separation. 

(ii) The interaction with lattice sites outside the sphere is described by giving an 
approximate form, for large separation, of the direct correlation function c ( x ) .  In the 
original MSA, as given by ( L l ) ,  the radius of the sphere in the scheme just described 
is taken to be the exclusion radius, defined as the range of the hard-core part of the 
potential, and the closure is specified at small separation by giving the values of h ( x )  
inside the exclusion sphere. We note that the scheme just outlined has obvious 
similarities with the effective medium approximation (EMA) [14, 151. It also has basic 
differences; for example, it gives, in general, critical exponents that are non-classical. 
For random percolation, the MSA yields critical exponents y = 2, q = 0, in three 
dimensions, compared with the results y = 1.80, q = -0.07 given by series estimates. 
These results were developed in detail for site percolation in [6]; they apply without 
change to the models discussed here. 

Our results for percolation thresholds are all reasonable estimates; some of them 
agree with estimates from series analysis and transfer-matrix methods to three decimal 
places. nevertheless, we do  not consider our method to be a serious competitor to 
these specialized methods for locating critical points, at least in its present state of 
evolution. Our emphasis lies rather in providing a global description of percolation 
models: we offer a method for calculating connectedness functions that agree with 
low-density series approximations, give reasonably good descriptions of the entire 
percolation locus, and show reasonable, albeit not exact, critical exponents. 

This paper is organized as follows. In section 2 we review the general procedure 
for solving the MSA for thermal lattice models. We illustrate the use of MsA-like 
approximations by applying these to the king model. In section 3 we discuss the 
relation between thermal models and percolation models in order to identify natural 
extensions of the MSA framework to percolation. We review the earlier treatment of 
site percolation. Appropriate variants of the MSA are then applied to both bond and 
site-bond percolation. In section 4 we discuss the use of the Kikuchi cluster approxima- 
tion to obtain the short-distance values of h ( x )  needed to complete an MsA-likeclosure. 
In section 5 we apply MsA-like approximations to directed site and bond percolation 
models. Section 6 discusses the present limitations of the approximations discussed in 
this paper, and gives suggestions for further research. Section 7 summarizes our 
conclusions. 

2. General MSA formalism 

In this section we review the general Ornstein-Zernike formalism for thermal lattice 
models. We illustrate its use by applying it to the nearest-neighbour king model, as 
described in lattice-gas terminology. Our emphasis is on identifying general strategies 
for creating approximations of MSA type. 

The Ornstein-Zernike equation is 

In this section we use the terminology of thermal physics, in which h ( x , , )  and c ( x , > )  
are, respectively, the full pair correlation function and direct pair correlation function. 
The sum in (2.1) is over all lattice sites. We note that the function h ( x )  and other 
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functions defined on a lattice depend upon a vector which we denote as x or xu; this 
is the separation of sites i and j .  An equation identical to (2.1) governs the relation 
between the pair connectedness function gJx) and direct connectedness function c,(x), 
in a percolation model. The appropriate subsidiary conditions, which must be used 
with this equation to give a closed computational scheme, are, however, different in 
thermal models and in percolation models. This will be discussed in detail in the next 
section . 

the corresponding function symbol. Thus we have 

J A Given and G Sfell 
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Here the integral over the wavenumber k is over a single Brillouin zone of the lattice. 
Aiso, il is the voiume of the Wigner-Seiiz ceii associaied io a singie iaiiice site; it is 
here normalized to unity. Taking the Fourier transform of both sides of (2.1) allows 
an algebraic solution for h(k) in terms of c'(k): 

t (k )  h^( k) = 
1 - pE(k)' 

The strategy for solving (2.1) is this: since c(x) is assumed to be short-ranged, t(k) 
can be written explicitly in terms of a small number of unknown constants, namely 
the different values of c(x) which are non-negligible. Substituting an assumed form 
for E(k) in (2.3) and Fourier-transforming then gives a solution for h ( x ) .  Boundary 
conditions and constraint conditions specify the remaining constants in the solution. 
These conditions contain the physical assumptions specific to the model being studied. 

Specificaiiy, for the probiems of interest in this section, we assume that c(xJ is 
non-zero only if xI2 is either zero or equal to a nearest-neighbour lattice vector, in 
which cases c(x) takes the values co and c,, respectively. Substituting this information 
in  the transform inverse to (2.2) then gives, for hypercubic lattices, 

E(k)=c0+2c, cos kia. (2.4) 

Here a is the lattice spacing and d is the dimensionality of the lattice. For the sake 
of algebraic simplicity, we specialize our discussion to hypercubic lattices and will 
work, unless otherwise stated, with the three-dimensional simple cubic (sc)  lattice. 
The discussion of this paper applies, however, to general Bravais lattices. 

;_, .-1 

Taking the Fourier transform of (2.3) and adding to both sides the identity 

then gives 

Using (2.4) for t (k)  allows us to rewrite the denominator of the RHS as 

(2.6) 

d 

( l + K 2 ) - d - '  coskja 
i - l  
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Here z is the coordination number for the lattice, and the quantity K 2  is given by the 
expression 

Substituting (2.7) into (2.6) gives 
e - f k  x 

I n r  d 3 k  &,,+phi x j =- 
ZPC, (271) J ( l + K 2 ) - d ~ ’ ~ ~ = , C o s k , a  

This last equation defines G(xj, which can be identified as the Green function of the 

function occurs frequently in mathematical physics and has been tabulated [16, 171. 
We note in particular that for K~ = 0, the function zG(x) is the generating function for 
random walks on the lattice being studied. 

We digress briefly to justify our identification of K. as defined by (2.8), with the 
inverse correlation length. For convenience, define x(x) = S,,,+ph(x). Then we have 

!B!riCC Version of !hp HP!Eho!?Z WZYP PqUl!iOE Wi!h WlVen!lEbCr K 2 = Z K 2 .  This 

(2.10) 

where the second step uses the Omstein-Zernike equation (2.3). Expanding the RHS 

of (2.10) in powers of k2 and substituting (2.4) gives 

1 +A2( kaf2+ O[  ( ka)4] (2.11) 

with k2 the norm squared of the vector k and A2 defined by 

For simple hypercubic lattices, A2 can equivalently be identified as [18, 191 

(2.12) 

(2.13) 

That is, A2 is the second spherical moment of the quantity x(x) divided by its zeroth 
moment. To see this, write x(x) in terms of its Fourier transform, replace the factors 
of x with k-derivatives, and note that (2.11) is a Taylor series. Direct comparison then 
shows that zA,= K - ~ ,  with K~ defined by (2.8). The singular part of the susceptibility 
neara critical point is proportional to the volume integral of h(xj, i.e. to h^(O). According 
to (2.3), we can then identify such a point by the condition 

pc*(O) = 1. (2.14) 

Note that by (2.8), this is equivalent to the condition K ~ = O .  Also, it is reasonable to 
identify A2 with the square of the correlation length and thus identify K - ~ = ( ~ ,  The 
correlation length defined in this manner has the same critical behaviour as that based 
on the assumption that h ( x j  decays exponentially; the former definition is, however, 
more generally applicable. For example, even when h(x) has algebraic decay, as it 
will when c(x) does, this definition is still applicable, providing that the second moment 
of c(x) exists [ I l l .  
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Several further relations are useful for the general discussion of critical behaviour 
as described by the Ornstein-Zernike equation. To develop these, we write Go and 
G,, respectively, for the values of the Green function G(x), defined by (2.9), evaluated 
for a lattice displacement vector equal, respectively, to zero, and to the vector difference 
between a pair of nearest neighbours. We can specify these displacement vectors as 
x = 0, and 1x1 = a, respectively. Note that this causes no ambiguity because, by symmetry, 
G(x) takes the same value for all nearest-neighbour displacement vectors. In the special 
case that K *  = 0, which defines the critical point, we write these same quantities as Go 
and GI,  respectively. Similarly, the values of h ( x )  at x = 0 and 1x1 = a are written h,  
and h , ,  respectively. Setting 1x1 = a  in (2.9) then gives 

Dividing (2.9) for x = la1 by the same equation, with x = 0, gives 

zG, - phi 
zG, l + p h o '  

Finally, we can relate Go and G,, for a sc lattice, by using the identity 

(2.15) 

(2.16) 

(2.17) 

(A similar identity holds for any lattice.) This follows directly by using the symmetry 
of a Bravais lattice and the definition of G, . This gives directly, using (2.5) and (2.9), 

(2.18) 

This relation can be used to eliminate G ,  from (2.16) and give a basic relation for the 
critical point: 

(1  + K ~ ) Z G O -  zG, = I. 

(2.19) 

We note that the lattice-gas density p occurs explicitly only in the combinations pc, ,  
pe ,  . Two further constraints must now be supplied to completely specify an MsA-like 
closure of the Ornstein-Zernike equation. In standard applications of the MSA to pair 
correlation functions, these are chosen to be the vanishing of the correlation h ( x )  
inside the interaction hard core, and the equation c(x) = - p u ( x )  outside this core. 
Here u(x) is the interparticle potential and p = I/kT The second of these equations 
is a 'linear-response' high-temperature approximation; it is exact to first order in p 
and the potential u(x). For the Ising model, this implies h,= -1 and c1 = K where 
K = -pJ, ,  and JLG is the lattice-gas coupling constant, related to the king model 
coupling constant JrSinz by 

Substituting these relations into (2.15) and (2.19) then gives the condition for criticality: 

P ( l - P ) K c , i , =  Go. (2.21) 

Because we consider the high-temperature, zero-field king model only, we have, for 
the lattice-gas density, p = 0.5. Thus 

K , , = 4 6 , -  1.08 (2.22) 
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forthe three-dimensional sc lattice. This should be compared with the value = 0.840 
given by the second Bethe-Peirls approximation for this lattice, and also with the value 
Kcrj, = 0.918 given by high-temperature series analysis [ Z O ] ,  which represents the most 
precise means available for estimating such quantities. 

We derive a variant of this approximation if we recall the definition of c(x) as the 
direct correlation function and write the density-independent (but temperature-depen- 
dent) approximation 

c ( ~ ) = f ( x ) = e - ~ - l .  (2.23) 

This approximation is exact to first order in the lattice-gas density, i.e. it is the first 
term in the Mayer expansion. Using c, from (2.23) gives the criticality condition 

&, = -h(1+4Go) (2.24) 

which implies Kti,=0.732. Thus for the sc king model in three dimensions, the 
estimates for the critical point given by the bigb-temperature approximation (2.22) 
and the low-density approximatian (2.24) are of comparable accuracy. It is (2.22) (or 
in general the constraint c(x) = -pu(x)) that has come to be called the MSA (because 
(2.22) proves to be exact in the mean-spherical and spherical models of a magnetic 
system). As we shall see, in some percolation problems, in which h ( x )  is replaced by 
the pair connectedness function and c(x) by the direct connectedness function, it turns 
out that (2.23) (or in general c(x) =exp(-pu(x))- 1) appears to be the more natural 
and generally useful approximation. This is also found to be the case in studies of 
continuum percolation [ 5 ] .  

3. The MSA for site and bond percolation 

In this section, we will apply the Ornstein-Zernike formalism of section 2 to lattice 
percolation models. First, the case of site percolation is reviewed. We then show that 
a natural extension of the MSA to bond percolation gives an analytic formula for the 
critical density that was previously proposed on empirical grounds by Sahimi and 
co-workers [21] as an accurate, general approximatian for this quantity. Finally, we 
give an approximation of MSA type for the general case of random site-bond percolation 
and reproduce the complete percolation locus for that model. 

The formalism of section 2 can be directly applied to percolation models because 
these satisfy an Ornstein-Zernike equation of the form (2.1). In particular, one has [2] 

(3.1) 

with g,(x12) and cC(xl2), respectively, being the connectedness function and direct 
connectedness function, respectively. The Ornstein-Zernike equation can be taken to 
be a definition of c(x), and thus has no content per se. However, we focus here on the 
‘derivation’ of this equation from other representations, in particular those based on 
Mayer series; these will suggest good approximations for the value of cc(x) and g,(x) 
for small separation. This is necessary because one requires an independent second 
relation between c,(x) and g,(x) in order to have a closed set of equations for these 
quantities. Below, we shall refer to both the p and p expansions of c,(x) and gc(x), 
which facilitate estimation of c,(x) for small argument. In the case of random or 
uncorrelated percolation, g, and c. are temperature-independent, so that only the 

gc(x12) = C , ( X , J + P  1 cc(x13)go(x3*) 
x1 
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p-expansion is available. We focus in particular on mappings of percolation models 
onto limiting cases of thermal models; these allow us to draw on our experience with 
MsA-like approximations for the latter. Such mappings allow us to exploit the machinery 
of liquid-state physics. Also, they are essential when thermal correlations are imposed 
between the sites or bonds of a percolation model. 

One can calculate virial series for c,(x) and gdx) using graph-theoretic formalism. 
In the absence of thermal correlations, an elegant way to d o  this is via a formulation 
due to Essam [22] in terms of self-avoiding walks. An equivalent, computationally 
powerful, formalism [24] for calculating d ( G )  involves the Mayer graphs of the s-state 
Potts model in the s + 1 limit. For example, for pure site percolation one has 

g , (x )=I  d(G)p"'G' (3.2) 

where the sum is over one-irreducible, two-rooted subgraphs G of the lattice being 
studied, U( G) is the number of vertices in the graph G and d (  G )  is a purely combinatoric 
quantity depending only on the graph G. The function c,(x) is given by a similar 
expression, but with the sum restricted to non-nodal graphs [22, 241. 

To develop series expansions for g,(r) and c,(x) in the presence of thermal 
correlations, it is natural to follow Hill [231 and Coniglio et a1 [2]. Specifically, we 
write the Boltzmann factor for a thermal model as a sum of two terms: 

J A Giuen and G Sfell 

G 

exp(-u(xJ)  

= [exp(-pu(x,2))~b(~,~)I  + l exp( - /Mxd)( l -  ~ d x d ) I  

= e+(x,J+ e*(x,,). (3.3) 

f(xl2) = f + ( X 1 2 )  + f * ( X , Z )  (3.4) 

-:" :..A..,.,%" ^^_--"-....A:-- --..-..,.. :-- r C -  1 n  r ..--. :.- 
l l l l J  IIIUUCCS a LuLLG>pu,Lu,'Lg sqJka,arrurr of Lllci inaysx '"I,UI"II 

with f'= e+ and f* = e* - 1. The function pb(x12) defines the separation-dependent 
probability of a bond between two particles. Its choice is dictated by the physical 
phenomenon to be modelled. The first term in (3.3) is identified with the particles 
being directly connected, the second with them not being directly connected. Substitute 
the sum (3.4) for each Mayer bond in the vinal expansions of h ( x , , )  and c(x12), and 
expand each Mayer graph into subgraphs whose lines correspond tof+-  orf*-bonds. 
Define [2,24] the connectedness function gc(x12) to be the sum of all such subgraphs 
in the expansion of h ( x )  in which the root points are joined by a chain off+-bonds; 
the blocking function gb(x,,) is the sum of all the remaining subgraphs. Similarly, 
define ihe direci conneciedness Function c.(xj io be ihe sum or' ihe corresponding 
subgraphs contributing to c(x); this is equivalent to the set of subgraphs contributing 
to g,(x) that in addition have no nodal points. These definitions are compatible with 
(3.1). Thus the correlation function has been written as the sum 

h (x i J  = Pc(Xa2) +gb(X12) (3.5) 

of the two-point connectedness function and two-point blocking function. One can 
show [24] that gC(xl2) as defined above formally is in fact the two-point connectedness 
function for a many-body system of particles having correlation function h ( x )  and 
density p. and being pairwise-connected with separation-dependent probability pb(x). 
The connectedness function gc(x12) is the probability distribution associated with 
finding particles at xI and x2 in the same connected cluster. Similarly, g d x n ) ,  the 
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two-point blocking function, is the corresponding probability distribution associated 
with the particles at x I  and x2 being in diflerent clusters. We note that our probability- 
density definition of gJx) and the corresponding definition of c,(x) induced by (3.1) 
are not dependent on the density series expansions of these quantities; the latter are 
not fully general. One expects such series to represent g,(x) and c,(x) only for p and 
P that characterize non-percolating states; as yet only partial results are available 
[7,251 for their radii of convergence. We note that, in general, one cannot give a 
separate physical interpretation in terms of probability densities, of c,(x). because, 
unlike g,(x), it need not be positive definite. 

It has been shown [8] that the expansion procedure of Hill can be carried out 
elegantly by using the isomorphism [25] between percolation and the one-state limit 
of the s-state Potts model. Specifically, the one-state limit of a continuum Potts model 
[8] with interparticle potential 

v,=$(XC)+u(X11)(1--6,,~) (3.6) 
gives a correlated continuum percolation model with interparticle potential +(x) and 
separation-dependent bond probability pb(x). If one develops Mayer expansions for 
the thermodynamic quantities of the model defined by (3.6), and applies the operator 
d/ds),=, to them, they yield the basic quantities in the description of the corresponding 
percolation model. This procedure provides a realization of the general percolation 
process described below (3.5). with each pair of particles connected with a separation- 
dependent bond probability given by 

P&) = 1 -exp(-pu(x)) (3.7) 
with u(x) as in (3.6). If we write the Omstein-Zernike equation (2.1) for the specific 
case of the s-state Potts model, take the s + 1 limit and, use identities [8,24] 

h(xi, a , x z , P ) + - g c ( x i z )  (3.8) 

4x8, . ,XZ,P)+)-C.(X,2) (3.9) 
we recover (3.1). Here 01 and p are any two different spin states. 

When we restrict the continuum Potts model to a lattice, by imposing the added 
restriction that particles only occupy positions whose coordinates are integers, the 
result is a Potts lattice gas [26] whose one-state limit is a very general percolation 
model. Before doing this, we add to the potential $(xu) in (3.6) a delta-function 
potential interaction that prevents overlap of two lattice-gas particles, and thus of two 
sites in the resulting percolation model. We then set the function pb(x) equal to pb, a 
nearest-neighbour bond probability for 1x1 = a, and equal to zero for x # a. The lattice 
site and bond percolation models are given by special cases pb = 1 and p = 1, respec- 
ti v e 1 y . 

The simplest percolation models can also be related to thermal lattice models in 
other ways. For example, pure bond percolation is the s + 1 limit of the s-state lattice 
Potts model. Site percolation is the one-state limit of a Potts model containing multisite 
interactions [27]. It can also be realized as the zero-temperature limit of a site-dilute 
Ising model [28]. The latter correspondence has been used by Kikuchi [29] to calculate 
values of the connectedness functions at small separation. In this and the following 
sections of this paper, we use these mappings to COnStrUCt MsA-like approximations 
for specific percolation models. We will use the same terminology as in section 2, but 
by h,, h ,  we will mean g,(x) evaluated at x = 0 and 1x1 = a, respectively. Similarly, by 
e,, cI we denote c,(x) for x = 0 and 1x1 = a, respectively. The random, nearest-neighbour 
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site-percolation model has already been studied using the MSA [6 ]  approach. In this 
case it is natural to choose 

ho=O h ,  = 1 (3.10) 
the former because we must forbid multiple occupation of sites, as just discussed, and 
the latter because neighbouring occupied sites are always connected. Substituting (3.10) 
into (2.19) gives the critical site density for percolation 
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(3.11) 

This is found numerically to be a good approximation in general [ 6 ] .  
For hypercubic lattices, the MSA just described gives pc to high accuracy for d a 4. 

However, in three dimensions, the scheme gives p.= 0.341, where series analysis gives 
0.312i0.003 [30]. This discrepancy suggests that an optimal MSA for site percolation 
has yet to be found. We note that the EMA ji4j for the conductivity of a site-disordered 
resistor lattice has similar difficulties. The EMA is very similar in spirit to  the hybrid 
approximations to be discussed next. Although this scheme gives excellent approxima- 
tions in two dimensions, it also predicts [15] a three-dimensional site percolation 
threshold which is too low by 10%. 

As already discussed, continuum percolation has many similarities to site percola- 
tion as well as bond percolation. Thus the difficulty just discussed may also account 
for the need to add correction terms [ 5 ]  to the naive MSA for random continuum 
percolation in order to recover a good estimate of the critical point in this model. 
These matters are under investigation. 

In the case of bond percolation, we keep the first equation of (3.10), but must 
modify the second. One possibility is to follow the intuitive notion that the direct 
connectedness function c(xI2j shouid be the probabiiiiy density associated with having 
a direct bond between the sites at xI and x2: 

CI=Pb. (3.12) 

Using the Potts model correspondence, and keeping only terms to first order in p, also 
gives this approximation. Thus this form of the MSA is guaranteed to be appropriate 
in conditions of low bond density; in terms of the related Potts model, pb is also a 
‘high-temperature’ expansion variable (see (3.7)). Also, we set p = 1 because all sites 
are occupied in bond percolation. This gives for the bond percolation threshold 

( P b ) C r i l =  GO. (3.13) 

Sahimi ef nl [21] noted from numerical comparison that this relation provided an  
extremely good approximation for all regular lattices, and in all dimensions d 3. It 
is very satisfying that an intuitively reasonable form of the MSA gives just this resuit. 
Table 1 shows the quality of the estimate (3.13) for a variety of three-dimensional 
lattices, as well as hypercubic lattices in higher dimensions. 

We could have instead made the high-temperature approximation 
cI = K (3.14) 

where K is defined by the correspondence between the Potts model coupling constant, 
and the bond probability in the percolation model which is its one-state limit: 

pb = 1 -e-K. (3.15) 

This gives the critical condition 
(pb)crit= 1-exp(-co)-0.223. (3.16) 
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Table 1. Approximations to the bond percolation threshold given by (3.18).  

Lattice Series expansions Monte Carlo 60 

Simple cubic 0.?488+0.0002t 0.2493 * 0.00021 0.252 73 
Body-centred cubic 0.18025*0.00015t - 0.174 15 
Face-centred cubic 0.119*0.0011 0.12510.0059 0.11206 
Hexagonal close-packed - 0.124~0.0050 0.112 06 
Four-dimensional simple cubic 0.16005*0.000 1st 0.1435+0.001t 0.156 
Five-dimensional simple cubic 0.118 19*0.000 04t 0.11810.0011 0.115 

This table was adapted from [21] and revised. 
Sources: t[361, $[391, g[40]. 

This should be compared with (3.13), which gives a value of 0.252, and the existing 
series analysis results, which give 0.2488 *0.0002. Thus (3.16) is a reasonable approxi- 
mation, but it lacks the remarkable accuracy of (3.13). A similar result is found [SI in 
studies of continuum percolation, where a form for C ( X )  must be assumed over the 
entire range of values for which u ( x )  is non-zero. In that case also, the low-density 
ansatz (3.12) is found to give a prediction for the threshold which is numerically 
superior to the high-temperature ansatz (3.14). 

We make the observation that approximations for the short-range values of c ( x )  
would be better motivated if in fact that quantity were a probability density; in fact, 
it seems never to be positive-definite. This can be easily checked for the problems 
studied here because c ( x )  takes only two values, e, and e,. For both pure site and 
pure bond percolation, it is always found that for any lattice studied that pcI > 0 and 
pc,, < 0. If this were not true, then critical percolation, in the MSA, would be directly 
isomorphic to a random-walk model [31] defined by transition probabilities pco, pc, .  
However, since having a non-zero value for co simply rescales the time coordinate 
describing the progress of a random walk, one can always rescale the other non-zero 
values of ci by (1-pc,)  and get a physically realizable random walk. In fact, we can 
rewrite the basic equation (2.15) in a way that is applicable to MsA-like approximations 
in which c(x) is not assumed to vanish for x >  1: 

- p h i .  (3.17) 

The existence of this formal equivalence between critical percolation and random-walk 
models is seen to be a general fact about all MSAS, even those for anisotropic or directed 
percolation models, as we discuss in section 5 .  However, in general, the coefficients c, 
oscillate in sign, thus higher-order approximations do not give realizable walks. We 
note that the normalization condition for the transition rates in such a random walk 
is just the criticality condition for the model being studied (e.g. see (2.14)). 

Since the MSA gives a good approximation to the threshold for both pure site and 
pure bond percolation, it is natural to use it to study the general site-bond percolation 
model, in which a cluster is defined to be a group of occupied sites connected by 
occupied bonds. As before, there are several natural approximations that one can use 
to close the Ornstein-Zernike equation. Note that (3.1 1) is, a priori, just as reasonable 
an assumption in the general site-bond problem as in the pure bond problem. Using 
it in the general problem, however, gives a percolation locus in the (p,  pb)  plane defined 

ppb = GO (3.18) 

-- ~ G I  
(1-Pco)  

by 
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which, e.g. in the case of pure site percolation, is immediately seen to be a very poor 
approximation. 

Thus, we find it more profitable to approximate h,  by enumerating the smallest 
graphs that contribute to it, i.e. the smallest bond sets that join two sites that are nearest 
neighbours. This is equivalent to using the Potts lattice-gas mapping described below 
(3.8) and calculating the Mayer expansion of that model. On the sc lattice, considering 
just the two graphs of figure 1 gives 

(3.19) 

This approximation for h,  is exact for site percolation, and gives, for bond percolation, 
the critical value (p&, = 0.258, whereas the approximation based on (3.12) gives 0.252 
for the same quantity. The best series estimate gives pb= 0.2488. The percolation locus 
in the (p,pb) plane as given by the approximation (3.16) is shown in figure 2. This 
locus has been obtained by simulation in both two dimensions [32] and three dimensions 
[33]. The critical locus given by substituting (3.19) in (2.19) is found by calculating 
the critical site density p, for a specific value of pbr by using the Newton-Raphson 
method. This approximation is already of high quality and can easily be improved by 
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2 3 4  
h i  (p, Pb) = Pb+ (1 -Pb) * [ I -  (1 - P Pb) 1 - Ph + (1 -Pb)4PzP:. 

h , =  - + m  
Figure 1. The lowest-order graphs in the density expansion of h , ,  the nearest-neighbour 
connectedness function, as given by (3.19). This quantity is required in the MSA for a 
general site-bond percolation model. Full and broken lines represent pb and ( l -pJ  
respectively. 

Flgure 2. The percolation locus far random site-bond percolation on the three-dimensional 
sc lattice, as given both by simulation (full line). and by the MSA ofsection 3 (broken line). 
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adding terms, except for the part of the phase plane near the pure site percolation 
limit; we discuss this problem further in section 5. It is worth noting that many different 
schemes are available for estimating the quantity h,  in both thermal and percolation 
models. In particular, the method of Kikuchi [34,35] involves assuming a functional 
form for the free energy which contains as parameters the values of h(x) for small 
separation x, and minimizing this functional to determine these quantities. We discuss 
this class of approximations in the next section. 

4. Hybrids of the Kikuchi cluster approximation and MSA 

In section 3, we showed that one can obtain good estimates for phase transition loci 
from MSA-like approximation schemes if reasonable estimates are available for values 
of the correlation functions at short range. In this section, we explore the possibility 
of using the Kikuchi cluster variational method (CVM) [34,35] to determine these. In 
order to complement our discussion in section 3 of the basis of an MSA approach to 
percolation models, we also obtain directly a Kikuchi CVM for bond percolation, by 
using the Fortuin-Kastelyn mapping [ 2 5 ]  between percolation and the Potts model. 
We compare the direct estimates of the critical bond probability given by this method 
with hybrid estimates given by using the structural information from this method as 
input to MsA-like approximations. The hybrid estimates are found to be superior. The 
CVM, first systematically developed by Kikuchi [34,35], involves several steps. We 
outline these here, restricting our discussion to the Ising-like spin models for which 
the theory was originally developed: 

(i) Because king variables take discrete values, the various small clusters of 
contiguous spins (pairs, triplets, etc.) can take on only a finite number of possible 
configurations. After specifying a set of small clusters to serve as a basis set, one 
chooses as working variables the probabilities of occurrence of each possible configur- 
ation of these clusters. If the basis set consists of only one cluster, a nearest-neighbour 
pair, the corresponding occurrence probabilities are just the values of the spin-spin 
correlation function at nearest-neighbour separation. We note that these variables are 
exactly the quantitites needed in the MsA-like approximations discussed in this paper. 
Direct use of these values yields the well-known Bethe approximation. 

(ii) In terms of the working variables, one writes a consistent approximation for 
the free energy of the system. Requiring that this expression be minimized with respect 
to the working variables then gives a set of constraint equations to determine the values 
of the working variables as functions of the system parameters (temperature, magnetic 
field, etc). 

(iii) One can then determine an approximation for the critical point, by requiring 
that the symmetry-breaking variables display power law behaviour as the singularity 
is approached. 

Instead of following this last step to determine the location of the critical point 
one can instead use the following hybrid method: use the functional expressions for 
values of the two-point correlation function at small separation as input to the MsA-like 
approximations discussed in section 3. Specifically, the CVM will give expressions for 
the quantities h, and h,  in the equation 
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as given by the MSA. We remark that it is not clear a priori that this method of 
determining the critical point will be successful, as no single consistent expansion 
scheme has been employed. For example, the numbers used to evaluate the RHS of 
(4.1) are obtained by setting c(x) to zero for 1x1 > a ;  this type of low-density approxima- 
tion is not a priori consistent with use of an extremely accurate value of h , .  

The algebra involved in realizing the programme outlined above has been detailed 
in the beautiful paper of Kikuchi [34] and will not be repeated here. We follow the 

h ,  used in section 2 to describe nearest-neighbour values of the king model correlation 
function is related to Kikuchi’s variable y ,  by h ,  = 4y, - 1.  If we use the lowest-order 
CVM, in which the only cluster in the basis set is a nearest-neighbour pair, the result is 

J A Given and G Stell 

no!z!ion ??sed in !hl! p p e r  znd mcrc!y give thc resl?!ts Cf our ca!cu!8!inns. The variab!e 

H 2  - 
h ,  = 6 -  H 2 -  H - 2  

6Ki:E; = 4K/:EL (4.3) 

(4.2) 

with H = exp(K,,,.,). This result was calculated for a two-dimensional king model, 
but at this low level of approximation, it is entirely consistent to use the relation 

noting that the Bethe approximation per se depends only on the combination zK, 
where z is the coordination number. Substituting (4.2) into (4.1) gives a critical point 
located at  K,,,, = 0.779, as compared with the value K,,,, = 0.8864 given by series analysis. 
This is about as accurate as the value ICcri, = 1.099 given by the direct Kikuchi method 
at the same level of approximation. An improved treatment which makes explicit use 
of the three-dimensional nature of the lattice [34] gives 

$ 2 - 1  
h ,  = 

4 2 + 6 4  + 1 

where the auxiliary variable @ is defined implicitly by 

H ~ - ~ ~ ~ ( ~ K  

(4.4) 

(4.5) 

Substituting (4.4) into (4.1) gives Kc,,,=0.926, which is an extremely good approxi- 
mation! 

In order to apply the same approximation scheme to percolation models, we first 
develop the Kikuchi cluster approximation for bond percolation. Kikuchi [29] applied 
his method to site percolation by noting that it is equivalent to the zero-temperature 
king model. He treated bond percolation as site percolation on the corresponding 
alternate lattice. For many common lattices, e.g. the sc lattice, this requires an enlarged 
primitive cell and, presumably, requires including larger clusters in the basis set to 
give results of comparable accuracy to that obtained for site percolation. We proceed 
instead by calculating Kcr,t(s) using the CVM for a dilute s-state Potts model, then 
taking the one-state limit as described in section 3. Using the Bethe approximation for 
the two-dimensional square lattice gives for the bond percolation threshold pb = 0.4226, 
as compared with the exact result pb=0.5.  Here we used the correspondence (3.15) 
between the Potts model coupling and bond probability. 

We now estimate the three-dimensional bond percolation transition b y  using a 
procedure parallel to that used above for the Bethe approximation to the king model. 
First we use the direct Kikuchi procedure just described which is based on the PottS 
model mapping. Using the scaling 6KL:y’ = 4KL::’ as above gives pb = 0.231 for the 
transition point in a simple cubic lattice, as compared to the value 0.2488 given by 
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series methods. We now instead use the functional form for the nearest-neighbour 
connectedness function, as given by the Kikuchi method just described, as input to 
the MSA defined by (4.1). The Bethe approximation for the Potts-model variable y , ,  
which is the probability that a nearest-neighbour pair are in different spin states, is 
given by 

y , =  l/[s+s(s--I)exp(-2K)]. (4.6) 

We obtain the nearest-neighbour connectedness function h, for bond percolation by 
using the correspondence (3.8) and the relation h ,  = 4y ,  - 1. Using the result in the 
MSA as before gives a critical bond probability pb = 0.242, a substantially more accurate 
result. 

As a more involved illustration of this hybrid Kikuchi-MSA method, we consider 
the Wannier approximation, in which the nearest-neighbour pair and elementary 
plaquette, or square, are taken to be basic clusters. It seems quite difficult to use the 
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Figure 3. Configurations whose probabilities of Occurrence form the working variables for 
the Wannier or square approximation to the properlies of the s-state Potts model. By 
convention, ‘ I ’  here denotes the symmetry-breaking stat% ‘2’. ‘3’, etc., denote any other 
distinct stales. The I = I limit of these variables give the two- and four-point correlation 
functions of bond percolation at small separation. 
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direct Kikuchi method described above, in which one first applies the cluster variational 
method to the s-state Potts model, then takes the one-state limit, as a means for locating 
the percolation critical point. Indeed, if the spins in the basic clusters are allowed to 
be in any of s states, with one of the states distinguished as the symmetry-breaking 
state, there are 20 different configurations of these clusters (see figure 3). Locating the 
critical point then involves finding the determinant of a matrix of rank 20. We note in 
passing that Kikuchi's method [34,35] of realizing bond percolation as site percolation 

MSA technique developed in this section is readily applied to this model, however. 
Since the one-state limit of the Kikuchi method is of some interest in its own right, 
we describe it in the appendix. Here we simply sketch this procedure and give the 
result of applying it. After setting the number of states s equal to one, the values of 
the configuration variables in the symmetric state are quickly obtained. We derive an 
expression for the pair configuration variab!e y ; ;  as a functi~n of bond density, a!ong 
with the corresponding form for h,. Substituting this into the MSA equation (4.1) gives 
a percolation critical point at bond density pc  = 0.249. This is in remarkable agreement 
with the best series estimate [36], pc = 0.2488*0.0002! 
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5. MSA-like approximations for directed percolation 

In this section we apply the class of MsA-like approximations discussed in this paper 
to directed site and bond percolation models. 

In order to gain some perspective on the strengths and limitations of the methods 
discussed in this paper, we use them to calculate the two-point connectedness function, 
and the location of the critical point, in directed percolation models. We can define 
these in generai as foiiows: a disiinguished direciion is chosen in ihe space occupied 
by the lattice being studied. This direction may or may not coincide with one of the 
principle axes of the lattice. When a vector in this preferred direction is projected onto 
the bonds of the lattice it induces in them an allowed direction of passage. In the 
convention adopted here, bonds which are orthogonal to the preferred vector remain 
non-oriented and thus allow two-way passage or connection. Models containing a class 
"1 sus,, UUIIUS W l l l  LLISII uc CdllCiU p"LLly U I I C L L C U  yslrurarrulr I I I U U S I D .  

is motivated by one of the basic classes of applications for directed percolation models: 
transport through random or two-phase materials under the influence of a uniform 
gradient or bias field. A given lattice may then yield a number of different directed or 
partly directed models depending on the preferred direction chosen. In terms of 
MsA-like methods, these models differ from isotropic models in one basic way: random 
walks on the corresponding lattices either allow only a very restricted class of closed 
paths, or allow no such paths. The importance of this fact will be explored further 
when we discuss the results of this section in general terms. Here we focus on developing 
specific MSA-like approximations. 

We may directly adapt the methods already developed to treat directed percolation 
as regular percolation on a lattice with peculiar connectivity [42] properties. 
Specif..ca!!y, we makc (2.9) 2nd (4.!) !he bzsk of OK !reatmen!. The !%!!er Wi!! be  sed 
unchanged, while for the sc-directed lattice (with the ( I ,  1, 1) vector the preferred 
direction), the equation (2.9) becomes 

^ P  -..- L L-...l- __.:I, .L^_ L^ -..,,-A -.....a.. -I: _^^.^ -I _^_^^I^ *:-- --A,.," n:" :-.. 
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Here the sum is over all sites, at positions x,, for which ci # 0. In general, directed 
percolation models will have two correlation lengths, both of which become infinite 
at the critical point [37]. We focus here on the value predicted by the MSA for the 
critical point. We calculate nth-order approximations as follows: 

(i) We assume that the n values of c(x) corresponding to nearest-neighbour, 
next-nearest neighbour, etc., separation are non-zero; for larger separations x we 
assume c(x) = 0. The non-zero values c. are related by the random-walk representation 
(5.i j to non-zero vaiues of step Fugacities w, by 

Here w ,  , w2, etc., are fugacities for steps to nearest-neighbour, next-nearest neighbour, 
etc., sites. We have used the fact that c,= 0 for this model; this can be seen by setting 
x=Oin  (5.1). 

(ii) One then solves n equations of form (4.1) for the step fugacities wi as functions 
of the (site or bond) density. Here we use explicit, exact formulae for both the 
connectedness function hi and the random-walk generating function zG,. These are 
readily found because the directed random paths between any pair of points which 
contribute to these functions are self-avoiding walks, i.e. they lack loops. Also, the 
number of such walks is small. 

(iii) Substituting the exact fugacities w j ( p )  into the criticality condition Xi wi = 1 
then gives a polynomial equation whose smallest positive root is the critical density. 

The critical densities given by successive approximations of this type are listed in 
table 2. The site percolation estimates seem to converge rapidly; however, for both 
site and bond problems, the resulting critical density to fifth order remains lower than 
the simulation value by about 8%. 

w. I = c.  I .  (5.2) 

Tabie i. Approximations to directed percoiation lhreshoids given by (Xigj .  T ie  siow 
convergence i s  believed to be a result of the failure of this scheme to include recurrence 
in the underlying random-walk representation (see discussion in Section 7).  The results 
labelled 'Series' are from [371. 

Order of aommimation Bond oercolation Site Dercolation 

I 0.333 0.333 
2 0.348 0.395 
3 0.352 0.396 
4 0.356 0.396 
5 0.362 0.396 
(Series) 0.384 0.432 

6. Limitations of the MSA and directions for further research 

In this section, we analyse possible reasons for the failure of MsA-like methods to yield 
highly accurate percolation thresholds for some systems, despite their great success 
for others. 

Why do MsA-like methods give substantially better threshold values for bond 
percolation models than for site percolation models? Of course, the extension of 
MsA-like methods in the former case is better motivated than in the latter case; this 
was the purpose of our development of the Potts model formalism in section 3. But 
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we need a more basic understanding to extend these methods further. Here we will 
explore two possible elements in such an understanding. 

The dominant singularity in the Mayer expansion of mean cluster size, and other 
physical quantities that describe bond percolation models, is the physical percolation 
threshold. This is not true in general for site percolation models; their dominant 
singularity tends to be located at a negative real value of density. Dominance by 
unphysical singularities has also been found in the series expansions of directed site 

We have no general argument that MsA-like approximations will yield a real, positive 
density as the dominant singularity. However, this is found to be the case with all the 
approximations studied in this paper. The dominant singularity in the anti-ferromag- 
netic lattice Potts model lies on the negative real axis. In the MSA, the Potts model for 
negative density is mapped onto bond percolation at positive density; thus, in the MSA, 

the dominant singularity of bond percolation occiurs a? a po~i?ivp, physical dpcsity. 
We observe the same fact in the Msn-like approximations studied in section 5. If one 
plots the singularities of the mean cluster size, which are just the zeros of the polynomial 
equation 

pc*(k=O, p )  = 1 (6.1) 
one always finds the dominant singularity at a physical density. The unphysical 
singularities associated with site percolation also cause difficulties in applying other 
standard methods for studying phase transitions. High-precision treatment of such 
structures via approximations of MSA type is thus an open problem. 

The slow convergence exhibited by the MSA for three-dimensional directed problems 
can be understood in two complementary ways. We briefly describe both of them. In 
the direct form of the MSA described in section 5 for directed percolation models, the 
connectedness iunction is represented as a generating function ior directed random 
walks. The MSA, roughly speaking, uses the balance between random walks that return 
to their starting point and those that do not to capture the balance between the 
short-range and long-range behaviour of g,(x) at criticality. In directed models in 
which all walks lack recurrences, this balance is missing because only short walks can 
contribute to the approximations for g,(x) at small separation. The argument to be 
discussed next suggests thar three dimensions mighi oiier speciai diEcuities for any 
use of the MSA to study the properties of directed systems. However, preliminary work 
with the method of section 5 shows that it displays the same convergence difficulties 
in four dimensions. 

Equivalently, one can reformulate the problem of calculating the percolation 
threshold in terms of random walks with recurrence, but in ( d  - 1) dimensions. I f  a 
directed three-dimensionai percoiaiiori duger is projected onto the piane peipendicuiai 
to the preferred direction, each site can be identified with a two-dimensional vector 
rl,  its position in the perpendicular plane with respect to the origin of that cluster. 
Then define [37] 
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to be the expected number of sites contained in the cluster and located at lateral 
positions F,. Proceeding as in section 3 then shows that S(F,) is given by thegenerating 
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function of a random-walk process in (d - 1) dimensions. This process occurs, in  
general, on a directed lattice (for the three-dimensional sc lattice the corresponding 
process occurs on the two-dimensional directed cyclic triangular lattice [38]), but 
involves random walks with non-zero probability of return to the origin. However, this 
formulation shows that the MSA describes a directed three-dimensional process in terms 
of a two-dimensional process. Since the MSA is well known to he inappropriate for 
two-dimensional problems (again, because of the recurrence properties of two- 
dimensional random walks), this gives another view of the failure of the MSA in this 
case. From this analysis, however, one sees that the MSA might well give accurate 
critical densities for higher-dimensional ( 2 3 )  directed percolation. 

7. Conclusions 

The MSA approach to site percolation has been successfully extended to both bond 
percolation and general site-bond percolation. The bond percolation threshold given 
by this method is found to coincide with an analytic estimate already shown to be of 
high accuracy. For the general site-bond percolation model on the sc lattice, the 
percolation locus calculated from this approximation agrees quite well with that given 
by simulation. Better agreement will require a general, reliable method for treating site 
percolation models, possibly using the corresponding Potts model mapping [27]. 

A class of approximations of MSA type have been applied to directed site and bond 
percolation models. These approximations give moderate accuracy, but will require 
basic improvements to give highly accurate predictions. Some reasons for this have 
been identified. 

A major advantage of this approach to percolation is that the resulting integral 
equations can be solved analytically to give the connectedness function gC(x1J. Sum- 
ming this function over all possible separation vectors xI2 then gives the mean cluster 
size. The results described in this paper can be generalized in a number of directions 
without giving up  this advantage. For example, the bond probability, which in this 
paper was taken to be non-zero only for particles with nearest-neighbour separation, 
can be taken to have certain, non-trivial, long-range forms while still allowing exact 
solution for the connectedness function [SI. 

It would be valuable to have efficient computational procedures for the accurate 
determination of gC(x,J in a general correlated percolation problem. The hybrid 
procedure discussed in section 4, in which the Kikuchi method is used to calculate 
the short-range values of g,(x,,) and used subsequently in the MSA, shows great promise 
in preiiminary studies reported here. It would he useful to find a direct Kikuchi 
approximation for bond percolation, so as to eliminate the added algebraic complexity 
introduced by the Potts model map, if this is possible. 

Also, in some models it may be necessary to use clusters substantially larger than 
those tractable by analytic means. For these models, an analogue to the numerical 
methods used in the phenomenological renormalization group would be valuable. 

These matters are presently under study. 
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J A Given and G Sell 

Appendix. Four-site Kikuchi approximation for h, 

In this appendix, we sketch the Wannier, or four-site, approximation for bond percola- 
tion on the sc lattice. 

In the Wannier, or four-site, approximation, the bond and square composed of 
nearest-neighbour sites are chosen as the set of small clusters used as a basis for 
building up correlations. For a general, s-state Potts model, there are 20 different 
configurations of the spins in these clusters. These are shown in figure 3. The variables 
giving the probability of occurrence of each site, bond and square configuration are 
denoted by x,, y ,  and z,~~, respectively, where the subscripts give the values of the site 
variables involved. In terms of these variables, the Kikuchi method gives, for the free 
energy of the system, 

PF=(fz)K x ~ ~ ( 1 - 8 ~ )  
L j  

Here z is the coordination number and K is the Potts coupling constant. The first term 
in this expression is the energy per spin, the term in braces gives the entropy per spin, 
and the last three terms incorporate constraints due to the normalization of variables. 

(A2) 

The expression (Al)  is minimized by meeting the conditions 

7 In x, - C + 0, = 0 

fZK(1- 8,) - 9  In y ,  - 0, + E, = 0 

1 (3 In z,,,- E,) = O  
4 CP 

where the sum in the equation (A4) is over the four cyclic permutations of ( i jk l ) .  It is 
not difficult to solve these equations in the symmetric phase. In the limit s + 1, the 
variables with all indices equal take the value unity; in this limit they give the 
correlations of a non-interacting spin model. The one-state limit of variables whose 
indices are not all equal is also well defined, however, and gives the correlation functions 
of bond percolation [7,8]. For example, the one-state limit of y,, gives the nearest- 
neighbour value of the blocking function; this is the lattice analogue of (3.8). This 
quantity is given by 

(AS) 

where the auxiliary variable x =exp(&E,,) with E,, the Lagrange multiplier in (AI).  
Equation ( A 9  determines the nearest-neighbour correlation function h ,  = 1 -y12 as a 
function of the bond density ph. Substituting this into (2.19) gives, for the bond 
percolation threshold in the sc lattice, pb = 0.249, which is in excellent agreement with 
the series estimate ph = 0.2488*0.0002 [36]. 

y 3  1, - - x 4 /( 1 -pb) = (3x2 - 3x’+ x4)) 
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